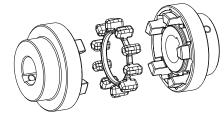
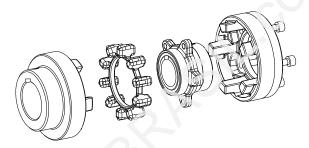


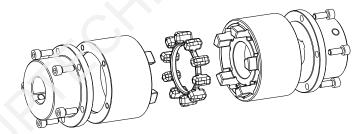
KTR-N Sheet:

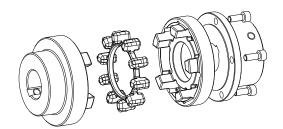

1 of 31 Edition: 15

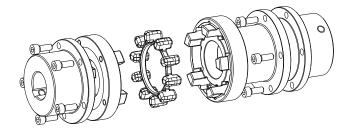
49510 EN

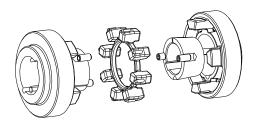

POLY-NORM®

Flexible jaw-type couplings AR, ADR, AVR, AZR, AR/AZR, AZVR, AR with taper clamping sleeve and their combinations


according to directive 2014/34/EU for finish bored, pilot bored and unbored couplings


Type AR


Type ADR, ADR-K and AVR


Type AZR and AZR short

Type AR/AZR

Type AZVR

Type AR with taper clamping sleeve

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N 49510 EN Sheet: 2 of 31 Edition: 15

POLY-NORM® is a torsionally flexible jaw coupling. It is able to compensate for shaft misalignment, for example caused by manufacturing inaccuracies, thermal expansion, etc.

Table of contents

1	Technical data	3
2	Advice	9
	 2.1 General advice 2.2 Safety and advice symbols 2.3 General hazard warnings 2.4 Intended use 2.5 Coupling selection 2.6 Reference to EC Machinery Directive 2006/42/EC 	9 10 10 10 11 11
3	Storage, transport and packaging	11
	3.1 Storage3.2 Transport and packaging	11 11
4	Assembly	12
	 4.1 Components of the coupling 4.2 Advice for finish bore 4.3 Assembly of the coupling (general) 4.4 Assembly of type AR 4.5 Assembly of type ADR, ADR-K and AVR 4.6 Assembly of type AZR, AZR short and AZVR 4.7 Assembly of type AR/AZR 4.8 Assembly of taper clamping sleeve 4.9 Displacements - alignment of the coupling 	12 16 16 17 17 19 20 21 22
5	Start-up	23
6	Breakdowns, causes and elimination	24
7	Disposal	26
8	Maintenance and service	26
9	Spares inventory, customer service addresses	27
10	Enclosure A	
	Advice and instructions regarding the use in key hazardous locations	27
	10.1 Intended use in potentially explosive atmospheres	27
	10.2 Inspection intervals for couplings in potentially explosive atmospheres 10.3 Standard values of wear	28 29
	10.4 Permissible coupling materials in potentially explosive atmospheres	29
	10.5 marking of couplings for potentially explosive atmospheres 10.6 EU Certificate of conformity	30 31

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N 49510 EN Sheet: 3 of 31 Edition: 15

1 Technical data

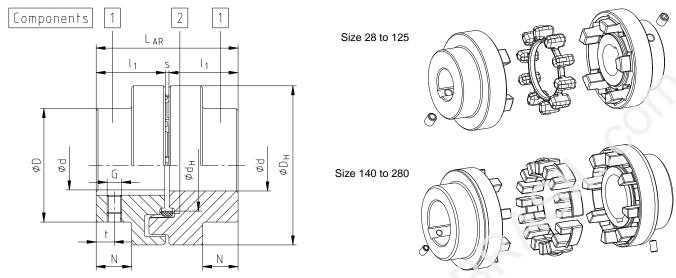


Illustration 1: POLY-NORM®, type AR

Table 1: Dimensions and torques - type AR

			PO	LY-NO	RM [®] A	R Cast	iron (EN	-GJL-25	0)				
	Elastom	er ring 1)					Dimension						
Size	(pa	rt 2) e [Nm]	Finish bore				Gener	al				ad for ews ³⁾	Weight 4) [kg]
	T _{KN}	T _{Kmax.}	$d_{\text{max.}}$	L _{AR}	I ₁	S	D _H	D	d _H	N	G	t	
28	40	80	30	59	28	3	69	46	36.5	12.0	M5	7	0.77
32	60	120	35	68	32	4	78	53	41.5	14.0	M8	7	1.14
38	90	180	40	80	38	4	87	62	50.0	19.5	M8	10	1.59
42	150	300	45	88	42	4	96	69	55.5	20.0	M8	10	2.17
48	220	440	50	101	48	5	106	78	64	24.0	M8	15	3.03
55	300	600	60	115	55	5	118	90	73	29.0	M8	14	4.27
60	410	820	65	125	60	5	129	97	81	33.0	M8	15	5.32
65	550	1100	70	135	65	5	140	105	86	36.0	M10	20	6.86
75	850	1700	80	155	75	5	158	123	100	42.5	M10	20	10.25
85	1350	2700	90	175	85	5	182	139	116	48.5	M10	25	15.05
90	2000	4000	95	185	90	5	200	148	128	49.0	M12	25	19.50
100	2900	5800	110	206	100	6	224	165	143	55.0	M12	25	26.98
110	3900	7800	50-120	226	110	6	250	185	158	60.0	M16	30	38.12
125	5500	11000	55-140	256	125	6	280	210	178	70.0	M16	35	54.21
140	7200	14400	65-155	286	140	6	315	235	216	76.5	M20	35	77.28
160	10000	20000	75-175	326	160	6	350	265	246	94.5	M20	45	106.24
180	13400	26800	75-200	366	180	6	400	300	290	111.5	M20	50	155.20
200	19000	38000	200	408	200	8	450	335	-	126	M24	50	218.50
220	30000	60000	220	448	220	8	500	370	-	140	M24	50	296.10
240	43000	86000	240	488	240	8	550	405	-	154	M24	50	390.00
260	55000	110000	260	530	260	10	650	440	-	158	M24	60	575.00
280	67000	134000	280	570	280	10	700	475	-	172	M24	60	716.00

¹⁾ Material Perbunan (NBR) 78 Shore A with size 28 to 180; material T-PUR 84 Shore A with size 200 to 280; with size 140 to 280 use of DZ individual elastomers

- 2) Bores H7 with keyway to DIN 6885 sheet 1 [JS9] and thread for setscrew on the keyway
- 3) Tightening torques of setscrews see table 2
- 4) Weights apply for max. bore diameters with feather keyway according to DIN 6885 sheet 1

Table 2: Setscrews DIN EN ISO 4029

Size	28	32	38	42	48	55	60	65	75	85	90
Dimension G [mm]	M5	M8	M8	M8	M8	M8	M8	M10	M10	M10	M12
Tightening torque T_A [Nm]	2	10	10	10	10	10	10	17	17	17	40
Size	100	110	125	140	160	180	200	220	240	260	280
Dimension G [mm]	M12	M16	M16	M20	M20	M20	M24	M24	M24	M24	M24
Tightening torque T _A	40	400	400	440	440	4.40	0.40	040	040	0.40	0.40

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N 49510 EN Sheet: 4 of 31 Edition: 15

1 Technical data

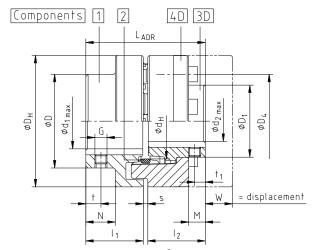


Illustration 2: POLY-NORM®, type ADR (three-part)

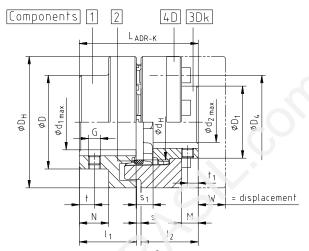


Illustration 3: POLY-NORM®, type ADR-K (three-part)

Table 3: Dimensions - type ADR and ADR-K

	POL	Y-NORM cast ird				t ype A\ nponen									1)		
			(-,,			mensior						- /			
Size	Max. finis	sh bore 1)						Genera'						Thread	hread for setscrews		
	d ₁	d ₂	L _{ADR} /	I ₁ /I ₂	s	S ₁	D _H	D	Di	d _H	N	М	W	G	t	t ₁	
38	40	34	80	38	4	12.0	87	62	48	50	19.5	11	12	M8	10	7	
42	45	38	88	42	4	14.5	96	69	54	55.5	20.0	12	16	M8	10	7	
48	50	44	101	48	5	16.0	106	78	62	64	24.0	13.7	16	M8	15	7	
55	60	50	115	55	5	17.0	118	90	72	73	29.0	18.7	15	M8	14	14	
60	65	56	125	60	5	18.0	129	97	80	81	33.0	22.2	14	M8	15	15	
65	70	60	135	65	5	20.0	140	105	86	86	36.0	26.7	11	M10	20	20	
75	80	68	155	75	5	23.5	158	123	98	100	42.5	27.8	16	M10	20	20	
85	90	78	175	85	5	27.0	182	139	112	116	48.5	33.7	18	M10	25	25	
90	95	85	185	90	5	29.5	200	148	122	128	49.0	31.5	26	M12	25	25	
100	110	95	206	100	6	33.0	224	165	136	143	55.0	37.5	28	M12	25	25	
110	50-120	105	226	110	6	36.0	250	185	150	158	60.0	39.5	30	M16	30	30	
125	55-140	115	256	125	6	39.0	280	210	168	178	70.0	48.0	35	M16	35	35	
140	65-155	55-135	286	140	6	-	315	235	195	216	76.5	47.0	59	M20	35	35	
160	75-175	65-155	326	160	6	-	350	265	225	246	94.5	65.0	43	M20	45	45	
180	75-200	65-175	366	180	6	-	400	300	255	290	111.5	79.0	33	M20	50	50	
200	200	200	408	200	8	-	450	335	290	-	126	95	7	M24	50	50	
220	220	220	448	220	8	-	500	370	320	-	140	103	8	M24	50	50	
240	240	240	488	240	8	-	550	405	350	-	154	119	1	M24	50	50	
260	260	260	530	260	10	-	650	440	380	-	158	109	34	M24	60	60	
280	280	280	570	280	10	-	700	475	410	-	172	109	29	M24	60	60	

Table 4: Torques and weights - type ADR and ADR-K

ADR-K

Size		38	42	48	55	60	65	75	85	90	100
Elastomer ring 3) (part 2)	T_{KN}	90	150	220	300	410	550	850	1350	2000	2900
Torque [Nm]	$T_{Kmax.}$	180	300	440	600	820	1100	1700	2700	4000	5800
Weight 4)	ADR	1.75	2.34	3.23	4.41	5.43	7.10	10.50	15.29	20.06	27.83
[kg]	ADR-K	1.70	2.26	3.12	4.24	5.24	6.67	10.01	14.44	19.02	26.28
Size		110	125	140	160	180	200	220	240	260	280
Elastomer ring 3) (part 2)	T_{KN}	3900	5500	7200	10000	13400	17600	22000	28000	50000	65000
Torque [Nm]	$T_{Kmax.}$	7800	11000	14400	20000	26800	35200	44000	56000	100000	130000
Weight 4)	ADB	38 05	55.67	80.30	108.00	155.00	215	20/	380	503	728

1) Bores H7 with keyway to DIN 6885 sheet 1 [JS9] and thread for setscrew on the keyway

53.26

37.31

2) Tightening torques of setscrews see table 2

[kg]

Material Perbunan (NBR) 78 Shore A with size 28 to 180; material T-PUR 84 Shore A with size 200 to 280; with size 140 to 280 use of DZ individual elastomers

104.70

150.30

77.90

4) Weights apply for max. bore diameters with feather keyway according to DIN 6885 sheet 1

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N Sheet: 49510 EN 5 of 31

Edition: 15

1 Technical data

Type ADR and ADR-K:

Table 5: Assignment of the cap screws DIN EN ISO 4762 - 12.9

Size	38	42	48	55	60	65	75	85	90	100
Screw size M	M6	M8	M8	M8	M8	M10	M10	M12	M16	M16
Screw length I	16	16	20	20	20	20	25	25	30	30
Quantity z 5)	5	5	6	6	6	6	6	6	6	6
Dimension D ₄	62	69	78	88	98	104	120	138	149	163
Tightening torque T _A [Nm]	10	25	25	25	25	49	49	86	210	210

Size	110	125	140	160	180	200	220	240	260	280
Screw size M	M16	M20	M20	M20	M20	M20	M24	M27	M30	M30
Screw length I	40	40	50	55	60	60	70	70	90	90
Quantity z 5)	8	8	8	9	10	10	10	10	10	10
Dimension D ₄	183	202	237	267	304	342	378	416	480	520
Tightening torque T_A [Nm]	210	410	410	410	410	580	1000	1500	2000	2000

⁵⁾ per flange hub

KTR-N 49510 EN Sheet: 6 of 31 Edition: 15

Technical data



Illustration 4: POLY-NORM®, type AZR

Table 6: Dimensions and torques - type AZR

POLY-NORM® AZR cast iron (EN-GJL-250), component 4N sizel (S355J2)																
			POLY-N	ORM® AZI	R cast	ron (E	N-GJL	-250),	compo	nent 4	N stee	I (S355	5J2)			
	Drop-out	Elaston	ner ring					Dim	ensions	[mm]						
Size	center length L	Torqu	art 2) e [Nm]	Finish bore ²⁾					Genera					Threa setscr	ad for ews 3)	Weight 4) [kg]
	[mm]	T_{KN}	T _{Kmax.}	$d_{max.}$	L_{AZR}	l ₂	l ₃	S	14	D _H	D_F	d _H	M	G	t	
28	100 140	40	80	30	170 210	35	49.5 69.5	3	1	69	46	36.5	26	M5	7	2.33 2.91
32	100 140	60	120	35	170 210	35	49 69	4	1	78	53	41.5	26	M8	7	2.86 3.50
38	100 140	90	180	40	184 224	42	49 69	4	1	87	62	50	33	M8	10	3.78 4.57
42	100 140	150	300	45	190 230	45	49 69	4	1	96	69	55.5	35	M8	10	4.56 5.41
48	100 140	220	440	50	204 244	52	49 69	5	1.5	106	78	64	41.5	M8	15	6.03 6.98
55	100 140 180	300	600	60	210 250 290	55	49 69 89	5	1.5	118	88	73	43.5	M8	14	7.81 9.21 10.57
60	100 140 180	410	820	65	220 260 300	60	49 69 89	5	1.5	129	97	81	47.5	M8	15	9.49 11.05 12.61
65	100 140 180	550	1100	70	230 270 310	65	49 69 89	5	1.5	140	105	86	51.5	M10	20	11.85 13.61 15.37
75	140 180 250	850	1700	80	290 330 400	75	69 89 124	5	1.5	158	123	100	60.5	M10	20	19.71 22.15 26.18
85	140 180	1350	2700	90	310 350	85	69 89	5	1.5	182	139	116	69.5	M10	25	27.57 30.65
90	250 140 180 250	2000	4000	100	320 360 430	90	124 69 89 124	5	1.5	200	148	128	73.5	M12	25	36.22 32.00 35.35 41.22
100	140 180 250	2900	5800	110	340 380 450	100	69 89 124	6	2	224	165	143	83	M12	25	42.31 46.44 53.67

Table 7: Assignment of the cap screws DIN EN ISO 4762 - 12.9

Size	28	32	38	42	48	55	60	65	75	85	90	100
Screw size M	M6	M6	M6	M6	M6	M8	M8	M8	M10	M10	M12	M12
Screw length I	18	18	20	20	20	25	25	25	30	30	35	35
Dimension D ₄	58	67	76	85	95	103	114	124	141	160	180	200
Quantity z 5)	4	4	5	5	6	6	6	6	6	6	6	6
Tightening torque T _A [Nm]	14	14	14	14	14	35	35	35	69	69	120	120

- Material Perbunan (NBR) 78 Shore A
- Bores H7 with keyway to DIN 6885 sheet 1 [JS9] and thread for setscrew on the keyway
- Tightening torques of setscrews see table 2
 Weights apply for max. bore diameters with feather keyway according to DIN 6885 sheet 1
- Each flange connection

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N 49510 EN Sheet: 7 of 31 Edition: 15

Technical data

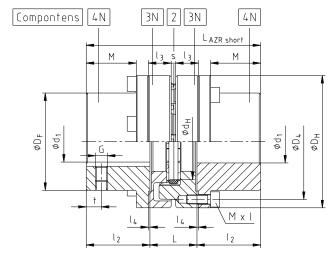


Illustration 5: POLY-NORM®, type AZR short

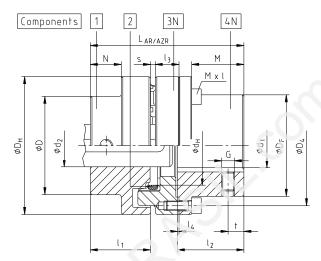


Illustration 6: POLY-NORM®, type AR/AZR

Table 8: Dimensions - type AZR short and AR/AZR

	POL	.Y-NORM®	AZR s	hort an	d AR/A	ZR cas	t iron (E	N-GJL	-250), o	ompone	nt 4N s	teel (S3	55J2)		
							Dimensi	ons [mr	n]						
Size						Ge	neral							Threa	ad for
Size	1 475 4 44	1,5475	l ₁	l ₂	l ₃	s	L.		D _H	D/D _E	d⊦	N	М	setscr	ews 1)
	LAZR short	L _{AR/AZR}	ין	12	13	J	14		DH	D/D _F	чн		101	G	t
28	101	80	28	35	15	3	1	31	69	46	36.5	12	26	M5	7
32	102	85	32	35	15	4	1	32	78	53	41.5	14	26	M8	7
38	116	98	38	42	15	4	1	32	87	62	50	19.5	33	M8	10
42	128	108	42	45	18	4	1	38	96	69	55.5	20	35	M8	10
48	144	122.5	48	52	19	5	1.5	40	106	78	64	24	41.5	M8	15
55	154	134.5	55	55	21	5	1.5	44	118	90/88	73	29	43.5	M8	14
60	166	145.5	60	60	22	5	1.5	46	129	97	81	33	47.5	M8	15
65	180	157.5	65	65	24	5	1.5	50	140	105	86	36	51.5	M10	20
75	206	108.5	75	75	27	5	1.5	56	158	123	100	42.5	60.5	M10	20
85	234	204.5	85	85	31	5	1.5	64	182	139	116	48.5	69.5	M10	25
90	252	218.5	90	90	35	5	1.5	72	200	148	128	49	73.5	M12	25
100	280	243	100	100	39	6	2	80	224	165	143	55	83	M12	25

Table 9: Torques and finish bores - type AZR short and AR/AZR

Size		28	32	38	42	48	55	60	65	75	85	90	100
Elastomer ring 2) (part 2)	T _{KN}	40	60	90	150	220	300	410	550	850	1350	2000	2900
Torque [Nm]	T _{Kmax} .	80	120	180	300	440	600	820	1100	1700	2700	4000	5800
Max. finish bore 3	d_1	30	35	40	45	50	60	65	70	80	90	100	110
[mm]	d_2	30	35	40	45	50	60	65	70	80	90	95	110
Weight 4)	AZR short	1.24	1.57	2.20	2.98	4.07	5.18	6.76	8.11	11.34	20.06	24.43	34.16
[kg]	AR/AZR	1.01	1.35	1.89	2.57	3.55	4.72	6.04	7.48	10.79	17.54	21.94	30.56

Table 10: Assignment of the cap screws DIN EN ISO 4762 - 12.9

Size	28	32	38	42	48	55	60	65	75	85	90	100
Screw size M	M6	M6	M6	M6	M6	M8	M8	M8	M10	M10	M12	M12
Screw length I	16	16	16	20	20	25	25	25	30	30	35	35
Dimension D ₄	58	67	76	85	95	103	114	124	141	160	180	200
Quantity z 5)	4	4	5	5	6	6	6	6	6	6	6	6
Tightening torque T _A [Nm]	14	14	14	14	14	35	35	35	69	69	120	120

- 1) Tightening torques of setscrews see table 2
- 2) Material Perbunan (NBR) 78 Shore A
- 3) Bores H7 with keyway to DIN 6885 sheet 1 [JS9] and thread for setscrew on the keyway
- 4) Weights apply for max. bore diameters with feather keyway according to DIN 6885 sheet 1
- 5) Each flange connection

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N 49510 EN Sheet: 8 of 31 Edition: 15

Technical data

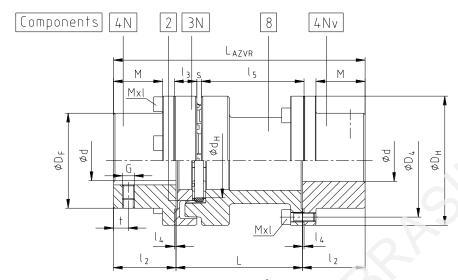


Illustration 7: POLY-NORM®, type AZVR

Table 11: Dimensions - type AZVR

	POLY-NORM® AZVR cast iron (EN-GJL-250), component 4N and 4Nv steel (S355J2)													
						Dime	nsions [m	<u>m]</u>						-
Size		1	,			General							ad for	Weight ²
0.20	L_{AZVR}	I_2	l ₃	s	I_4	l ₅	L	D _H	D_F	d _H	М	setscr G	ews ''	[kg]
38	224	42	69	4	1	69	140	87	62	50	33	M8	10	4.33
42	230	45	69	4	1	69	140	96	69	55.5	35	M8	10	5.25
48	244	52	69	5	1.5	69	140	106	78	64	41.5	M8	15	6.83
55	250	55	49	5	1.5	89	140	118	88	73	43.5	M8	14	8.59
55	290	55	89	5	1.5	09	180	110	00	73	43.3	IVIO	14	9.97
60	260	60	49	5	1.5	89	140	129	97	81	47.5	M8	15	10.66
60	300	60	89	5	1.5	09	180	129	97	01	47.5	IVIO	15	12.22
65	270	65	49	5	1.5	89	140	140	105	86	51.5	M10	20	12.74
65	310	65	89	5	1.5	09	180	140	105	00	51.5	WITO	20	14.50
75	330	75	89	5	1.5	89	180	158	123	100	60.5	M10	20	21.34
13	450	15	209	ວ	1.5	09	300	100	123	100	00.5	IVITU	20	28.58
85	350	85	89	5	1.5	89	180	182	139	116	69.5	M10	25	29.91
03	470	00	209	J	1.5	09	300	102	139	110	09.5	IVITO	25	39.25

Table 12: Torques and finish bores - type AZVR

Size		38	42	48	55	60	65	75	85
Elastomer ring 3) (part 2)	T_{KN}	90	150	220	300	410	550	850	1350
Torque [Nm]	T _{Kmax} .	180	300	440	600	820	1100	1700	2700
Finish bore 4) [mm]	d _{max.}	40	45	50	60	65	70	80	90

Table 13: Assignment of the cap screws DIN EN ISO 4762 - 12.9

Size	38	42	48	55	60	65	75	85
Screw size M	M6	M6	M6	M8	M8	M8	M10	M10
Screw length I	20	20	20	25	25	25	30	30
Dimension D ₄	76	85	95	103	114	124	141	160
Quantity z ⁵⁾	5	5	6	6	6	6	6	6
Tightening torque T _A [Nm]	14	14	14	35	35	35	69	69

- 1) Tightening torques of setscrews see table 2
- 2) Weights apply for max. bore diameters with feather keyway according to DIN 6885 sheet 1
- 3) Material Perbunan (NBR) 78 Shore A
- 4) Bores H7 with keyway to DIN 6885 sheet 1 [JS9] and thread for setscrew on the keyway
- 5) Each flange connection

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N 49510 EN Sheet: 9 of 31 Edition: 15

Technical data

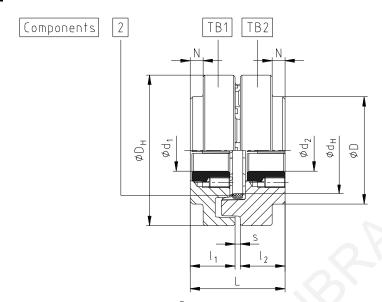


Illustration 8: POLY-NORM® type with taper clamping sleeve

Table 14: Dimensions - type with taper clamping sleeve

		POLY-NO	RM [®] with	taper c	lamping	sleeve	nub TB1	and TB	2 cast ir	on (EN-	GJL-250	0)		
	Elastome	er ring ¹⁾	Speed			[Dimensio	ns [mm]				Topor		
Size	(part		n _{max.}	Finish bore 2)				Ger	neral			Taper clamping	Weight 3)	
OIZO	Torque	[Nm]	[rpm]	d ₁	d_2	1./1.	1 ₁ /l ₂ s L		D	Dн	N	sleeve	[kg]	
	T_{KN}	$T_{\text{Kmax.}}$	[ipiii]	Min.	Max.	11/12	5		D	DH	IN	310000		
32	60	120	7300	10	28	25.5	4	55	53	78	7.5	1108	1.05	
42	150	300	6000	11	32	31.0	4	66	69	96	9.0	1210	1.98	
48	220	440	5400	14	42	30.0	5	65	78	106	6.0	1610	2.35	
40	220	440	3400	14	42	42.5	5	90	70	100	18.5	1615	2.96	
60	410	820	4400	14	50	38.5	5	80	97	129	10.5	2012	4.16	
65	550	1100	4100	16	60	62.5	5	130	105	140	-	2517	9.13	
75	850	1700	3600	16	60	52.5	5	110	123	158	20.0	2517	8.54	
85	1350	2700	3150	16	60	46.5	5	98	139	132	10.0	2517	11.60	
00	1330	2700	3130	35	75	82.0	5	169	139	182	10.0	3030	14.81	
90	2000	4000	2900	25	75	52.0	5	109	148	200	11.0	3020	14.88	
100	2900	5800	2600	35	90	98.0	6	202	165	224	53.0	3535	27.41	
125	5500	11000	2050	40	100	111.5	6	229	210	280	56.5	4040	48.70	

- 1) Material Perbunan (NBR) 78 Shore A
- 2) Bores H7 with keyway to DIN 6885 sheet 1 [JS9] and thread for setscrew on the keyway
- 3) Weights apply for max. bore diameters with feather keyway according to DIN 6885 sheet 1

POLY-NORM® couplings with attachments that can generate heat, sparks and static charging (e. g. combinations with brake drums, brake disks, overload systems like torque limiters, fans etc.) are <u>not</u> permitted for the use in hazardous locations.

A separate analysis must be performed.

2 Advice

2.1 General advice

Please read through these operating/assembly instructions carefully before you start up the coupling. Please pay special attention to the safety instructions!

The **POLY-NORM**® coupling is suitable and approved for the use in hazardous locations. When using the coupling in potentially explosive atmospheres, please observe the special advice and instructions regarding safety in enclosure A.

The operating/assembly instructions are part of your product. Please store them carefully and close to the coupling. The copyright for these operating/assembly instructions remains with KTR.

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N 4 Sheet: 1

49510 EN 10 of 31

15

Edition:

2 Advice

2.2 Safety and advice symbols

Warning of potentially explosive atmospheres

This symbol indicates notes which may contribute to preventing bodily injuries or serious bodily injuries that may result in death caused by explosion.

Warning of personal injury

This symbol indicates notes which may contribute to preventing bodily injuries or serious bodily injuries that may result in death.

Warning of product damages

This symbol indicates notes which may contribute to preventing material or machine damage.

General advice

This symbol indicates notes which may contribute to preventing adverse results or conditions.

Warning of hot surfaces

This symbol indicates notes which may contribute to preventing burns with hot surfaces resulting in light to serious bodily injuries.

2.3 General hazard warnings

With assembly, operation and maintenance of the coupling it has to be made sure that the entire drive train is secured against accidental switch-on. You may be seriously hurt by rotating parts. Please make absolutely sure to read through and observe the following safety indications.

- All operations on and with the coupling have to be performed taking into account "safety first".
- Please make sure to switch off the power pack before you perform your work on the coupling.
- Secure the power pack against accidental switch-on, e. g. by providing warning signs at the place of switch-on or removing the fuse for current supply.
- Do not reach into the operating area of the coupling as long as it is in operation.
- Please secure the coupling against accidental contact. Please provide for the necessary protection devices and covers.

2.4 Intended use

You may only assemble, operate and maintain the coupling if you

- have carefully read through the operating/assembly instructions and understood them
- had technical training
- are authorized by your company

The coupling may only be used in accordance with the technical data (see chapter 1). Unauthorized modifications on the coupling design are not admissible. We will not assume liability for any damage that may arise. In the interest of further development we reserve the right for technical modifications.

The **POLY-NORM**[®] described in here corresponds to the technical status at the time of printing of these operating/assembly instructions.

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N Sheet: 49510 EN 11 of 31

Edition: 15

2 Advice

2.5 Coupling selection

For a permanent and failure-free operation of the coupling it must be selected according to the selection instructions (according to DIN 740 part 2) for the particular application (see catalogue drive technology "POLY-NORM®").

If the operating conditions (performance, speed, modifications on engine and machine) change, the coupling selection must be reviewed.

Please make sure that the technical data regarding torque refer to the elastomer part only. The transmittable torque of the shaft-hub-connection must be reviewed by the customer and is subject to his responsibility.

For drives subject to torsional vibrations (drives with cyclic stress due to torsional vibrations) it is necessary to perform a torsional vibration calculation to ensure a reliable selection. Typical drives subject to torsional vibrations are e. g. drives with diesel engines, piston pumps, piston compressors etc. If requested, KTR will perform the coupling selection and the torsional vibration calculation.

If the coupling is used in potentially explosive atmospheres, the size must be selected such that there is a minimum safety of s = 2.0 between the torque of the machine and the rated torque of the coupling or shaft-hub-connection.

2.6 Reference to EC Machinery Directive 2006/42/EC

The couplings supplied by KTR should be considered as components, not machines or partly completed machines according to EC Machinery Directive 2006/42/EC. Consequently KTR does not have to issue a declaration of incorporation. For details about safe assembly, start-up and safe operation please refer to the present operating/assembly instructions considering the warnings.

3 Storage, transport and packaging

3.1 Storage

The coupling hubs are supplied in preserved condition and can be stored at a dry and roofed place for 6 - 9 months.

The features of the elastomer rings/DZ individual elastomers remain unchanged for up to 5 years with favourable stock conditions.

The storage rooms must not include any ozone-generating devices like e. g. fluorescent light sources, mercury-vapour lamps or electrical high-voltage appliances. Humid storage rooms are not suitable.

Please make sure that condensation is not generated. The best relative air humidity is less than 65 %.

3.2 Transport and packaging

In order to avoid any injuries and any kind of damage please always make use of proper transport and lifting equipment.

The couplings are packed differently each depending on size, number and kind of transport. Unless otherwise contractually agreed, packaging will follow the in-house packaging specifications of KTR.

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N 49510 EN Sheet: 12 of 31

Edition: 15

4 Assembly

The coupling is generally supplied in individual parts. Before assembly the coupling has to be inspected for completeness.

4.1 Components of the coupling

Components of POLY-NORM®, type AR

Component	Quantity	Description	Material	Balancing condition
1	2	Hub	EN-GJL-250	According to customer specification
2	1	Elastomer ring/DZ individual elastomers	NBR (Perbunan) from size 200 T-PUR	6
9	2	Setscrews DIN EN ISO 4029	Steel	

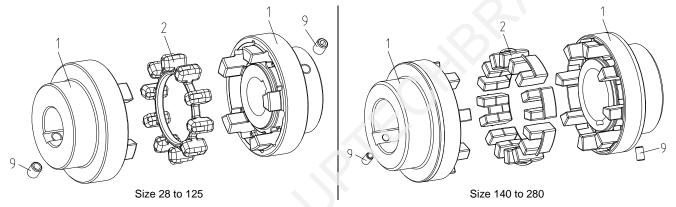


Illustration 9: POLY-NORM®, type AR

Components of POLY-NORM®, type ADR (three-part) type AVR corresponding to components of 3D and 4D mirrored

Component	Quantity	Description	Material	Balancing condition
1	1	Hub	EN-GJL-250	According to customer specification
2	1	F.lastomer ring/DZ individual elastomers	NBR (Perbunan) from size 200 T-PUR	
3D	1	Flange hub	EN-GJS-400-15 from size 200 steel (S355J2)	According to customer specification
4D	1	Cam ring	EN-GJL-250	
9	2	Setscrews DIN EN ISO 4029	Steel	
10	see table 5	Cap screws DIN EN ISO 4762	Steel	

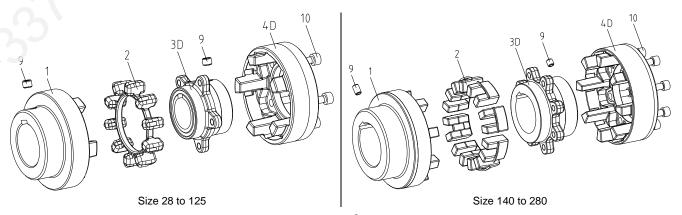


Illustration 10: POLY-NORM®, type ADR (three-part)

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N 49510 EN Sheet: 13 of 31

Edition: 15

4 Assembly

4.1 Components of the coupling

Components of POLY-NORM®, type ADR-K (three-part)

Component	Quantity	Description	Material	Balancing condition
1	1	Hub	EN-GJL-250	According to customer specification
2	1	Elastomer ring/DZ individual elastomers	NBR (Perbunan) from size 200 T-PUR	
3Dk	1	Flange hub K	EN-GJS-400-15 from size 200 steel (S355J2)	According to customer specification
4D	1	Cam ring	EN-GJL-250	
9	2	Setscrews DIN EN ISO 4029	Steel	
10	see table 5	Cap screws DIN EN ISO 4762	Steel	

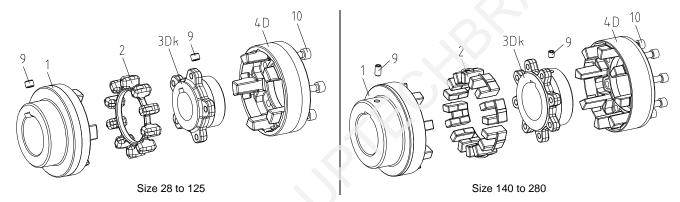


Illustration 11: POLY-NORM®, type ADR-K (three-part)

Components of POLY-NORM®, type AZR and AZR short

Component	Quantity	Description	Material	Balancing condition
2	1	Elastomer ring	NBR (Perbunan)	
3N	2	Driving flange	EN-GJL-250	A according to customer
4N	2	Coupling flange	EN-GJL-250 / S355J2	According to customer specification
9	2	Setscrews DIN EN ISO 4029	Steel	
10	see table 7 and 10	Cap screws DIN EN ISO 4762	Steel	

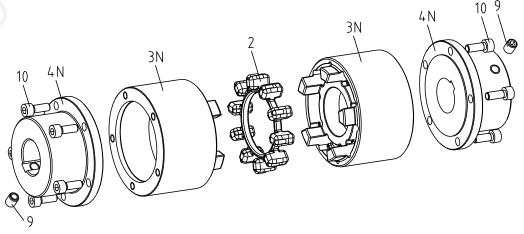


Illustration 12: POLY-NORM®, type AZR and AZR short

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N 49510 EN Sheet: 14 of 31

Edition: 15

4 Assembly

4.1 Components of the coupling

Components of POLY-NORM®, type AR/AZR

Component	Quantity	Description	Material	Balancing condition
1	1	Hub	EN-GJL-250	According to customer specification
2	1	Elastomer ring	NBR (Perbunan)	
3N	1	Driving flange	EN-GJL-250	A
4N	1	Coupling flange	EN-GJL-250 / S355J2	According to customer specification
9	2	Setscrews DIN EN ISO 4029	Steel	
10	see table 10	Cap screws DIN EN ISO 4762	Steel	

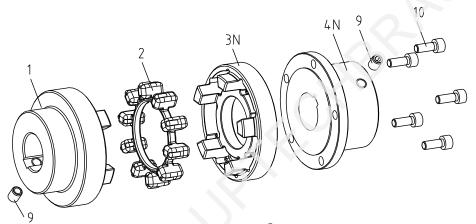


Illustration 13: FOLY-NORM®, type AR/AZR

Components of POLY-NORM $^{\circ}$, type AZVR

Component	Quantity	Description	Material	Balancing condition
2	1	Elastomer ring	NBR (Perbunan)	
3N	1	Driving flange	EN-GJL-250	
4N	1	Coupling flange	EN-GJL-250 /	According to customer
4Nv	1	Coupling flange AZVR	S355J2	specification
8	1	Driving flange AZVR	EN-GJL-250	
9	2	Setscrews DIN EN ISO 4029	Steel	
10	see table 13	Cap screws DIN EN ISO 4762	Steel	

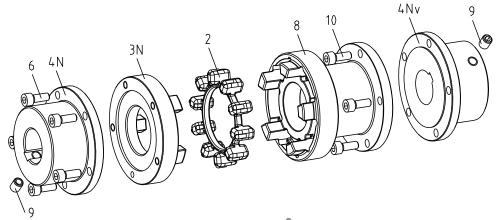


Illustration 14: POLY-NORM®, type AZVR

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N Sheet:

Sheet: 15 of 31 Edition: 15

49510 EN

4 Assembly

4.1 Components of the coupling

Components of POLY-NORM®, type with taper clamping sleeve

Component	Quantity	Description	Material	Balancing condition
2	1	Elastomer ring	NBR (Perbunan)	
9	2 1)	Setscrew	Steel	
TB1	2	Hub for taper clamping sleeve	EN-GJL-250	According to customer specification
11	2	Taper clamping sleeve	EN-GJL-250	

¹⁾ For each taper clamping sleeve from size 100, 3-off setscrews are needed.

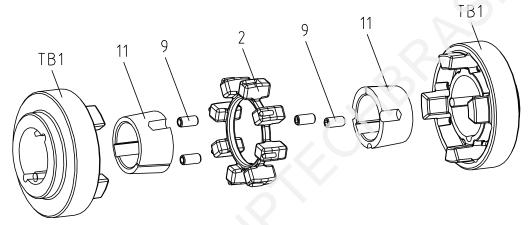


Illustration 15: POLY-NORM® type with taper clamping sleeve

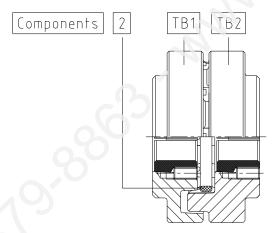


Illustration 16: Type with taper clamping sleeve hub design TB1 and TB2

Coupling design:

TB1 Screwing on cam side TB2 Screwing on collar side

Different combinations of types TB1 and TB2 are possible.

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N Sheet: 49510 EN 16 of 31

Edition: 15

4 Assembly

4.2 Advice for finish bore

KTR supplies unbored or pilot bored coupling components and spare parts only upon explicit request of the customer. These parts are additionally labelled with the symbol \mathbf{Q} .

The customer bears the sole responsibility for all machining processes performed subsequently on unbored or pilot bored as well as finish machined coupling components and spare parts. KTR does not assume any warranty claims resulting from insufficient remachining.

Table 15: Recommended fit pairs acc. to DIN 748/1

Bore	[mm]	Shaft tolerance	Pora talarana
above	up to	Shall tolerance	Bore tolerance
	50	k6	H7
50		m6	(KTR standard)

If a feather keyway is intended to be used in the hub, it should correspond to the tolerance ISO JS9 (KTR standard) with normal operating conditions or ISO P9 with difficult operating conditions (frequently alternating torsional direction, shock loads, etc.). The keyway should preferably be located between the cams. With axial fastening by setscrews the tapping should be located on the keyway.

The transmittable torque of the shaft-hub-connection must be reviewed by the customer and is subject to his responsibility.

4.3 Assembly of the coupling (general)

We recommend to inspect bores, shaft, keyway and feather key for dimensional accuracy before assembly.

Heating the hubs, coupling flanges or flange hubs lightly (approx. 80 °C) allows for an easier mounting on the shaft.

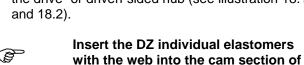
Please pay attention to the ignition risk in potentially explosive atmospheres!

Touching the heated hubs causes burns. Please wear safety gloves.

With the assembly please make sure that the dimension s or L, respectively (see table 1 to 14 of the different types) is observed so that the hubs are not in contact with each other during the operation.

Disregarding this advice may cause damage to the coupling.

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	


KTR-N Sheet: 49510 EN 17 of 31

Edition: 15

4 Assembly

4.4 Assembly of type AR

- Mount the hubs on the shaft of driving and driven side (see illustration 17).
- Insert the elastomer ring or DZ individual elastomers, respectively, into the cam section of the drive- or driven-sided hub (see illustration 18.1 and 18.2).

the hub first (see illustration 18.2).

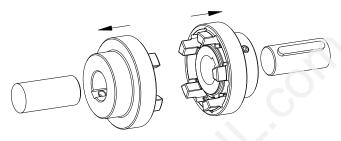
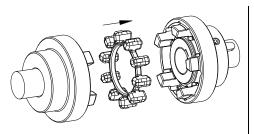



Illustration 17: Assembly of hub

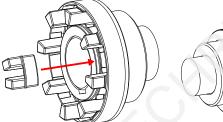


Illustration 18.2: Assembly of DZ individual elastomers

- Shift the power packs in axial direction until the distance dimension s is achieved (see illustration 19).
- If the power packs are already firmly assembled, shifting the hubs axially on the shafts allows for adjusting the dimension s (see illustration 19).
- Fasten the hubs by tightening the setscrews DIN EN ISO 4029 with a cup point (tightening torques see table 2).

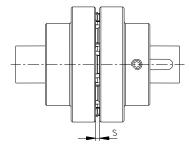


Illustration 19: Assembly of coupling

4.5 Assembly of type ADR, ADR-K and AVR

- Stick the flange hub and the cam ring together (see illustration 20).
- Hand-tighten the components first.
- Mount the hub and flange hub with cam ring onto the shaft of driving and driven side (see illustration 21).
- Tighten the screws at the tightening torques T_A specified in table 5 by means of a suitable torque key.
- Insert the elastomer ring or DZ individual elastomers, respectively, into the cam section of the drive- or driven-sided hub or cam ring (see illustration 22.1 and 22.2).

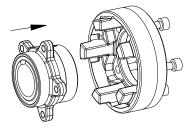


Illustration 20: Assembly of flange hub with cam ring

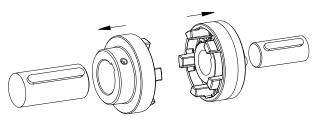
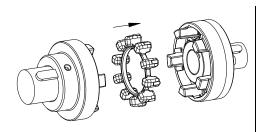
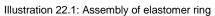


Illustration 21: Assembly of hub and flange hub with cam ring

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	


KTR-N Sheet: 49510 EN 18 of 31


Edition: 15

4 Assembly

4.5 Assembly of type ADR, ADR-K and AVR

Insert the DZ individual elastomers with the web into the cam section of the hub or cam ring first (see illustration 22.2).

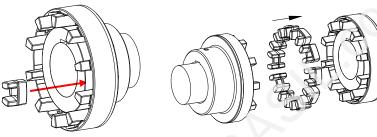
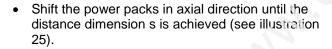



Illustration 22.2: Assembly of DZ individual elastomers

To facilitate the assembly of the elastomer ring when the power packs are already firmly assembled, we would recommend to separate the elastomer ring up to size 65 in one position between the dampers (see illustration 23).

From size 75 on we would recommend to separate the elastomer ring between every second damper to facilitate the assembly (see illustration 24).

- If the power packs are already firmly assembled, shifting the hubs axially on the shafts allows for adjusting the dimension s (see illustration 25).
- Fasten the hub or flange hubs by tightening the setscrews DIN EN ISO 4029 with a cup point (tightening torque see table 2).

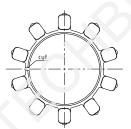


Illustration 23: Mounting aid of elastomer ring up to size 65

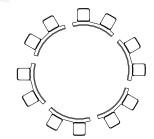


Illustration 24: Mounting aid of elastomer ring from size 75

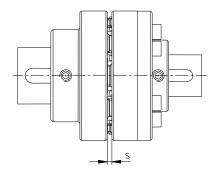


Illustration 25: Assembly of coupling

Having started up the coupling, the tightening torque of the screws and wear of elastomer ring has to be inspected at regular maintenance intervals.

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N Sheet: 49510 EN 19 of 31

Edition: 15

4 Assembly

4.6 Assembly of type AZR, AZR short and AZVR

- Mount the coupling flanges onto the shaft of driving and driven side (see illustration 26). The internal sides of the coupling flanges must be flush with the front sides of the shafts.
- Shift the power packs in axial direction until the distance dimension L is achieved.
- Fasten the coupling flanges by tightening the setscrews DIN EN ISO 4029 with a cup point (tightening torque see table 2).

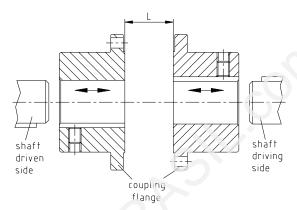


Illustration 26: Assembly of coupling flanges

 Please plug the driving flanges and the elastomer ring together (see illustration 27).

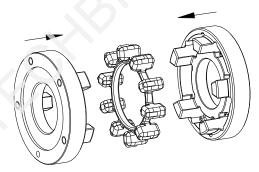


Illustration 27: Assembly of driving flange with elastomer ring

- Put the components plugged together between the coupling flanges (see illustration 28).
- Hand-tighten the components first.
- Tighten the screws by means of a suitable torque key to the tightening torques T_A specified in table 7, 10 and 13.
- Please check the dimension s or L (see table 6, 8 and 11).
- If the power packs are already firmly assembled, shifting the coupling flanges axially on the shafts allows for adjusting the dimension s or L (see illustration 28).

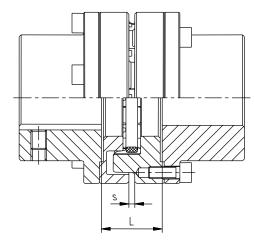


Illustration 28: Assembly of coupling

Having started up the coupling, the tightening torque of the screws and wear of elastomer ring has to be inspected at regular maintenance intervals.

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N Sheet: 49510 EN 20 of 31

Edition: 15

4 Assembly

4.7 Assembly of type AR/AZR

 Mount the coupling flange onto the shaft of driving or driven side (see illustration 29).
 The internal side of the coupling flange must be flush with the faces of the shafts.

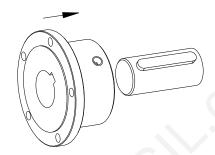


Illustration 29: Assembly of coupling flange

 Please plug the hub, the elastomer ring and the driving flange together (see illustration 30).

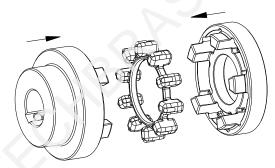
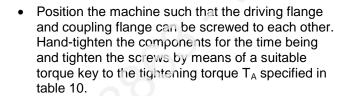



Illustration 30: Assembly of hub, elastomer ring and driving flange

- Assemble the parts plugged together onto the other shaft end (see illustration 31).
- Fasten the hub and coupling flange by tightening the setscrews DIN EN ISO 4029 with a cup point (tightening torques see table 2).

Please review the dimension s (see illustration 32).

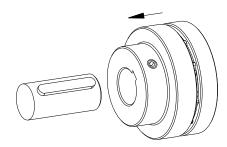


Illustration 31: Assembly of component assembly

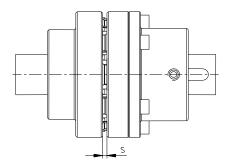


Illustration 32: Assembly of coupling

Having started up the coupling, the tightening torque of the screws and wear of elastomer ring has to be inspected at regular maintenance intervals.

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N 49510 EN Sheet: 21 of 31

Edition: 15

4 Assembly

4.8 Assembly of taper clamping sleeve

Assembly of taper clamping sleeve:

Clean the contact surfaces of the taper clamping sleeves and of shaft and hub and afterwards apply thin fluid oil lightly (e. g. Ballistol Universal oil or Klüber Quietsch-Ex).

The taper clamping sleeves have axially parallel, cylindrical and smooth blind holes. Only half of these holes are located in the material of the sleeve. The other half located in the hub has got threads.

Fit the coupling element and the taper clamping sleeve into each other, make sure that the bores cover each other and tighten the setscrews lightly. Fit the coupling element along with the taper clamping sleeve on the shaft and tighten the setscrews at the tightening torque specified in table 16.

During the process of screwing the hub is mounted onto the taper sleeve and thus the sleeve is pressed onto the shaft. By light blows of the hammer the taper clamping sleeve must be pushed further into the taper bore by means of a suitable sleeve. Afterwards re-tighten the setscrews at the tightening torque specified in table 16. This process must be performed at least once.

After the drive has operated under load for a short while please inspect if the setscrews have unscrewed. An axial fixing of the Taper Lock hub (coupling hub with taper clamping sleeve) is obtained by proper assembly only.

If used in hazardous locations the setscrews to fix the taper clamping sleeves have to be secured against working loose additionally, e. g. conglutinating with Loctite (average strength).

The use of taper clamping sleeves without a feather key is not permitted in hazardous locations.

Oils and greases with molybdenum disulphide or high-pressure additives, additives of Teflon and silicone as well as internal lubricants reducing the coefficient of friction significantly must not be used.

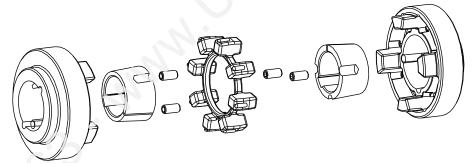


Illustration 33: POLY-NORM® type with taper clamping sleeve

Disassembly of taper clamping sleeve:

The taper clamping sleeve is released by removing the setscrews. Afterwards one of the setscrews used as forcing screw is screwed in the thread of the sleeve and tightened.

The coupling hub detached in this way can be manually removed from the shaft with the taper clamping sleeve.

Table 16:

Taper		Screw di	mensions		
clamping	G	L	SW	T_A	Quantity
sleeve	[inch]	[inch]	[mm]	[Nm]	
1108	1/4	1/2	3	5.7	2
1210	3/8	5/8	5	20	2
1610	3/8	5/8	5	20	2
1615	3/8	5/8	5	20	2
2012	7/16	7/8	6	31	2
2517	1/2	7/8	6	49	2
3020	5/8	1 1/4	8	92	2
3030	5/8	1 1/4	8	92	3
3535	1/2	1 1/2	10	115	3
4040	5/8	1 3/4	12	170	3

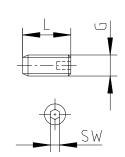


Illustration 34: Withworth setscrew (BSW)

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

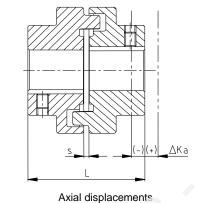
KTR-N Sheet: 49510 EN 22 of 31

Edition: 15

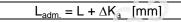
4 Assembly

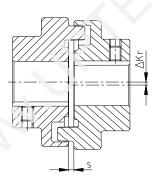
4.9 Displacements - alignment of the coupling

The **POLY-NORM**[®] compensates for displacements generated by the shafts to be combined as shown in table 17. Excessive misalignment may be generated by inaccurate alignment, production tolerances, thermal expansion, shaft deflection, twisting of machine frames, etc.

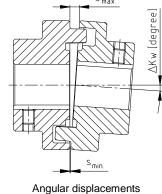


In order to ensure a long service life of the coupling and avoid dangers with the use in potentially explosive atmospheres, the shaft ends must be accurately aligned. Please absolutely observe the displacement figures specified (see table 17). If the figures are exceeded, the coupling will be damaged.


The more accurate the alignment of the coupling, the longer is its service life. If used in potentially explosive atmospheres for the explosion group IIC (marking II 2GD c IIC T X), only half of the displacement figures (see table 17) are permissible.


Please note:

- The displacement figures specified in table 17 are maximum figures which must not arise in parallel. If radial
 and angular displacement occurs at the same time, the sum of the displacement figures must not exceed ΔK_r
 or ΔK_W.
- Please inspect with a dial gauge, ruler or feeler gauge whether the permissible displacement figures specified in table 17 can be observed.



Axiai displacements

Radial displacements

Angular displacements

 $\Delta K_w = S_{max.} - S_{min.}$ [mm]

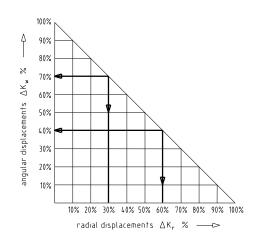
Illustration 35: Displacements

Examples of the displacement combinations specified in illustration 36:

Example 1:

 $\Delta K_r = 30 \%$

 $\Delta K_w = 70 \%$


Example 2:

 $\Delta K_r = 60 \%$

 $\Delta K_w = 40 \%$

 $\Delta K_{total} = \Delta K_r + \Delta K_w \le 100 \%$

Illustration 36: Combinations of displacement

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N Sheet: 49510 EN 23 of 31

Edition: 15

Assembly

4.9 Displacements - alignment of the coupling

Table 17: Displacement figures

Size		28	32	38	42	48	55	60	65	75	85	90
Max. axial displacen	nent ∆K _a [mm]	±1	±1	±1	±1	±1.5	±1.5	±1.5	±1.5	±1.5	±1.5	±1.5
Max. radial displacement ΔK_r	1500 rpm	0.2	0.25	0.25	0.25	0.3	0.3	0.3	0.35	0.4	0.4	0.5
[mm] with	3000 rpm	0.15	0.18	0.18	0.18	0.22	0.22	0.22	0.26	0.3	0.3	0.33
Max. angular	1500 rpm (1 degree)	1.2	1.4	1.5	1.7	1.8	2.0	2.2	2.4	2.7	3.0	3.4
displacement ∆K _w [mm]	3000 rpm (0.5 degree)	0.6	0.7	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.5	1.7

Size		100 110 125 140 160 180 200						220	240	260	280	
Max. axial displacen	nent ∆K _a [mm]	±3 ±3 ±3 ±3 ±4 ±4				±4	±4	±4	±4			
Max. radial		1500 rpm							1350	1220	1030	960
					1000 1911				rpm	rpm	rpm	rpm
displacement ∆K _r [mm] with		0.5	0.6	0.6	0.6	0.65	0.65	0.65	0.70	0.70	0.85	0.85
[IIIII] WILII	3000 rpm	0.37	-	-	-	-		-	-	-	-	-
	1500 rpm		1500 rpm					1350	1220	1030	960	
Max. angular					1300 Ipili	l			rpm	rpm	rpm	rpm
displacement ΔK _w	(1 degree)	3.9	4.3	4.8	5.5	6.1	6.0	7.8	8.7	9.6	11.3	12.2
[mm]	3000 rpm (0.5 degree)	1.9	-	-	-	- (÷	-	-	-	-	-

5 Start-up

Before start-up of the coupling, please inspect the tightening of the setscrews in the hubs, the alignment and the distance dimension s and adjust, if necessary, and also inspect all screw connections for the tightening torques specified, dependent on the type of coupling.

If used in potentially explosive atmospheres the setscrews to fasten the hubs as well as all screw connections must be secured against working loose additionally, e. g. conglutinating with Loctite (average strength).

Finally the coupling protection against accidental contact must be fitted.

The cover must be electrically conductive and included in the equipotential bonding. Bellhousings (magnesium share below 7.5 %) made of <u>aluminium</u> and damping rings (NBR) can be used as connecting element between pump and electric motor. The cover may only be taken off with standstill of the unit.

During operation of the coupling, please pay attention to

- · different operating noise
- vibrations occurring.

If the couplings are used in locations subject to dust explosion and in mining the user must make sure that there is no accumulation of dust <u>in a dangerous volume</u> between the cover and the coupling. The coupling must not operate in an accumulation of dust.

For covers with unlocked openings on the top face no light metals must be used if the couplings are used as equipment of equipment group II (if possible, from stainless steel). If the couplings are used in mining (equipment group I M2), the cover must not be made of light metal. In addition, it must be resistant to higher mechanical loads than with use as equipment of equipment group II.

Please observe protection note ISO 16016.	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N Sheet: 49510 EN 24 of 31

Edition: 15

5 Start-up

The minimum distance "Sr" between the protective device and the rotating parts must at least correspond to the figures specified below.

If the protective device is used as cover, regular openings can be arranged from the point of view explosion protection that must not exceed the following dimensions:

Openings	Cover [mm]				
Openings	Top side	Lateral components	Distance "Sr"		
Circular - max. diameter	4	8	≥ 10		
Rectangular - max. lateral length	4	8	≥ 10		
Straight or curved slot - max. lateral length/height	not permissible	8	≥ 20		

If you note any irregularities with the coupling during operation, the drive unit must be switched off immediately. The cause of the breakdown must be specified by means of the table "Breakdowns" and, if possible, be eliminated according to the proposals. The potential breakdowns specified can be hints only. To find out the cause all operating factors and machine components must be considered.

Coating of coupling:

If coated (priming, paintings, etc.) couplings are used in potentially explosive atmospheres, the requirements on conductibility and coating thickness must be considered. With paintings up to 200 µm electrostatic load does not have to be expected. Multiple coatings exceeding 200 µm are prohibited for explosion group IIC.

6 Breakdowns, causes and elimination

The below-mentioned failures can lead to a use of the **POLY-NORM**® coupling other than intended. In addition to the specifications given in these operating and assembly instructions please make sure to avoid such failures. The errors listed can only be clues to search for the failures. When searching for the failure the adjacent components must generally be considered.

If used other than intended the coupling can become a source of ignition. EU directive 2014/34/EU requires special care by the manufacturer and the user.

General failures with use other than intended:

- Important data for the coupling selection were not forwarded.
- The calculation of the shaft-hub-connection was not considered.
- Coupling components with damage occurred during transport are assembled.
- If the heated hubs are assembled, the permissible temperature is exceeded.
- The clearance of the components to be assembled is not coordinated with one another.
- Tightening torques have been fallen below/exceeded.
- Components are mixed up by mistake/assembled incorrectly.
- A wrong or no elastomer ring/DZ individual elastomers are inserted in the coupling.
- No original KTR components (purchased parts) are used.
- Old/already worn off elastomer rings resp. DZ individual elastomers or those which are stored for too long are used.
- **(E)**: The coupling used/the coupling protection used is not suitable for the operation in potentially explosive atmospheres and does not correspond to EU directive 2014/34/EU, respectively.
- Maintenance intervals are not observed.

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N 49510 EN Sheet: 25 of 31 Edition: 15

6 Breakdowns, causes and elimination

Breakdowns	Causes	Hazard notes for hazardous locations	Elimination
	Misalignment		Set the unit out of operation Eliminate the reason for the misalignment (e. g. loose foundation bolts, breaking of the engine mount, heat expansion of unit components, modification of the mounting dimension s of the coupling) For inspection of wear see item inspection
Different operating noise and/or vibrations occuring	Wear of elastomer ring, short-term torque transmission due to metal contact		Set the unit out of operation Disassemble the coupling and remove remainders of the elastomer ring Inspect coupling components and replace coupling components that are damaged Insert elastomer ring, assemble coupling components Inspect alignment, adjust if necessary
	Screws for axial fastening of hubs working loose		 Set the unit out of operation Inspect alignment of coupling Tighten the screws to fasten the hubs and secure against working loose For inspection of wear see item inspection
	Wear of elastomer ring, torque Ig transmission due to metal contact	Ignition risk due to sparking	Set the unit out of operation Replace complete coupling Inspect alignment
	Breaking of the cams due to high impact energy/overload	M. J.	 Set the unit out of operation Replace complete coupling Inspect alignment Find out the reason for overload
Breaking of cams	Operating parameters do not meet with the performance of the coupling		 Set the unit out of operation Review the operating parameters and select a bigger coupling (consider mounting space) Assemble new coupling size Inspect alignment
	Operating error of the unit		 Set the unit out of operation Replace complete coupling Inspect alignment Instruct and train the service staff
90	Misalignment		 Set the unit out of operation Eliminate the reason for the misalignment (e. g. loose foundation bolts, breaking of the engine mount, heat expansion of unit components, modification of the mounting dimension s of the coupling) For inspection of wear see item inspection
Early wear of elastomer ring	e. g. contact with aggressive liquids/oils, influence by ozone, too high/low ambient temperature etc. causing a physical modification of the elastomer ring	Ignition risk due to sparking with metallic contact of the cams	 Set the unit out of operation Disassemble the coupling and remove remainders of the elastomer ring Inspect coupling components and replace coupling components that are damaged Insert elastomer ring, assemble coupling components Inspect alignment, adjust if necessary Make sure that other physical modifications of the elastomer ring are excluded

Please observe protection note ISO 16016.	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N Sheet: Edition:

49510 EN 26 of 31

15

6 Breakdowns, causes and elimination

Breakdowns	Causes	Hazard notes for hazardous locations	Elimination
Early wear of elastomer ring	excessively high ambient/contact temperatures for the elastomer ring; max. permissible - 30 °C/+ 80 °C	lgnition risk due to sparking with metallic	 Set the unit out of operation Disassemble the coupling and remove remainders of the elastomer ring Inspect coupling components and replace coupling components that are damaged Insert elastomer ring, assemble coupling components Inspect alignment, adjust if necessary Inspect and adjust ambient/contact temperature
Early wear of elastomer ring (Hardening/embrittle ment of the elastomer cam)	Vibrations of drive	sparking with metallic contact of the cams	 Set the unit out of operation Disassemble the coupling and remove remainders of the elastomer ring Inspect coupling components and replace coupling components that are damaged Insert elastomer ring, assemble coupling components Inspect alignment, adjust if necessary Find out the reason for vibrations

If you operate with a worn elastomer ring/DZ individual elastomers (see chapter 10.3) and the subsequent contact of metal parts, a proper operation meeting the explosion protection requirements and acc. to directive 2014/34/EU is not ensured.

7 Disposal

In respect of environmental protection we would ask you to dispose of the packaging or products on termination of their service life in accordance with the legal regulations and standards that apply, respectively.

Metal

Any metal components have to be cleaned and disposed of by scrap metal.

• Nylon materials

Nylon materials have to be collected and disposed of by a waste disposal company.

8 Maintenance and service

POLY-NORM[®] is a low-maintenance coupling. We recommend to perform a visual inspection on the coupling **at least once** a **year**. Please pay special attention to the condition of the elastomer rings or DZ individual elastomers of the coupling.

- Since the flexible machine bearings of the driving and driven side settle during the course of load, please inspect the alignment of the coupling and re-align the coupling, if necessary.
- The coupling parts have to be inspected for damages.
- The screw connections have to be inspected visually.

Having started up the coupling the tightening torques of the screws have to be inspected during the usual inspection intervals.

With the use in potentially explosive atmospheres please observe chapter 10.2 *Inspection intervals for couplings in a potentially explosive atmospheres*.

Please observe protection note ISO 16016.	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N 49510 EN Sheet: 27 of 31

Edition: 15

Spares inventory, customer service addresses

A basic requirement to ensure the readiness for use of the coupling is a stock of the most important spare parts on site.

Contact addresses of the KTR partners for spare parts and orders can be obtained from the KTR homepage at www.ktr.com.

(B)

KTR does not assume any liability or warranty for the use of spare parts and accessories which are not provided by KTR and for the damages which may incur as a result.

10 **Enclosure A**

Advice and instructions regarding the use in

hazardous locations

hub/elastomer ring/hub or hub/DZ individual elastomers/hub Type AR:

hub/elastomer ring/flange hub/cam ring or Type ADR:

hub/DZ individual elastomers/flange hub/cam ring

hub/elastomer ring/flange hub K/cam ring or Type ADR-K:

hub/DZ individual elastomers/flange hub K/cam ring

Type AVR: cam ring/flange hub/elastomer ring/flange hub/cam ring or

cam ring/flange hub/DZ individual elastomers/flange hub/cam ring

coupling flange/driving flange/elastomer ring/driving flange/coupling flange Type AZR and AZR short:

hub/elastomer ring/driving flange/coupling flange Type AR/AZR:

Type AZVR: coupling flange/driving flange/elastomer ring/driving flange AZVR/

coupling flange AZVR

Type with taper clamping sleeve: hub/taper clamping sleeve/elastomer ring/taper clamping sleeve/hub

(Use of taper clamping sleeve only permissible in combination with a

feather key!)

potentially explosive atmospheres 10.1 Intended use in

Conditions of operation in

potentially explosive atmospheres

POLY-NORM® couplings are suitable for the use according to EU directive 2014/34/EU.

1. Industry (with the exception of mining)

- Equipment group II of category 2 and 3 (coupling is not approved for equipment group 1)
- Media class G (gases, fogs, steams), zone 1 and 2 (coupling is not approved for zone 0)
- Media class D (dusts), zone 21 and 22 (coupling is not approved for zone 20)
- Explosion group IIC (explosion class IIA and IIB are included in IIC)

Temperature class:

Temperature class	Ambient or operating temperature T _a	Max. surface temperature
T5, T4, T3, T2, T1	- 30 °C to + 80 °C ¹⁾	+ 100 °C ²⁾
T6	- 30 °C to + 65 °C	+ 85 °C

The maximum surface temperatures each result from the maximum permissible ambient or operating temperature Ta plus the maximum temperature increase ΔT of 20 K which has to be taken into account.

- The ambient or operating temperature T_a is limited to +80 °C due to the permissible permanent operating temperature of the elastomers used.
- The maximum surface temperature of + 100 °C applies for the use in locations which are potentially subject to dust explosion, too.

Please observe protection note ISO 16016.	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N 49510 EN Sheet: 28 of 31 Edition: 15

10 Enclosure A

Advice and instructions regarding the use in

hazardous locations

potentially explosive atmospheres

2. Mining

Equipment group I of category M2 (coupling is \underline{not} approved for equipment group M1). Permissible ambient temperature - 30 °C to + 80 °C.

10.2 Inspection intervals for couplings in potentially explosive atmospheres

Explosion group	Inspection intervals
3G 3D	For couplings which are classified in category 3G or 3D the operating and assembly instructions that are usual for standard operation apply. During the standard operation which has to be subject to the ignition risk analysis the couplings are free from any ignition source. Merely the temperature increase produced by self-heating and depending on the coupling type has to be considered: for POLY-NORM®: $\Delta T = 20 \text{ K}$
II 2G c IIB T4, T5, T6	An inspection of the circumferential backlash and a visual inspection of the elastomer ring/DZ individual elastomers must be performed after 3,000 operating hours for the first time, at the latest after 6 months after start-up of the coupling. If you note insignificant or no wear on the elastomer ring/DZ individual elastomers upon this initial inspection, further inspections can each be performed after 6,000 operating hours or at the latest after 18 months, provided that the operating parameters remain the same. If you note significant wear during the initial inspection, so that it would be recommendable to replace the elastomer ring/DZ individual elastomers, please find out the cause according to the table "Breakdowns", if possible. The maintenance intervals must be adjusted to the modified operating parameters without fail.
II 2G c IIC T4, T5, T6	An inspection of the circumferential backlash and a visual inspection of the elastomer ring/DZ individual elastomers must be performed after 2,000 operating hours for the first time, at the latest after 3 months after start-up of the coupling. If you note insignificant or no wear on the elastomer ring/DZ individual elastomers upon this initial inspection, further inspections can each be performed after 4,000 operating hours or at the latest after 12 months, provided that the operating parameters remain the same. If you note significant wear during the initial inspection, so that it would be recommendable to replace the elastomer ring/DZ individual elastomers, please find out the cause according to the table "Breakdowns", if possible. The maintenance intervals must be adjusted to the modified operating parameters without fail.

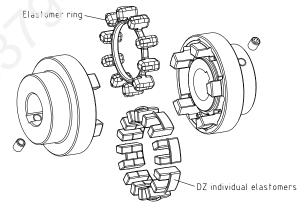


Illustration 37: POLY-NORM®, type AR

Inspection of torsional backlash

Here the backlash between the coupling cams and the elastomer teeth must be inspected by means of reversing backlash.

The friction/wear may be 25 % of the original tooth thickness of the elastomer before the elastomer rings/DZ individual elastomers must be replaced.

When reaching the limit of wear and tear Δs_{max} , the elastomer rings/DZ individual elastomers must be replaced immediately, irrespective of the inspection intervals.

Please observe protection note ISO 16016.	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N 49510 EN Sheet: 29 of 31

Edition: 15

10 Enclosure A

Advice and instructions regarding the use in

hazardous locations

10.3 Standard values of wear

Reaching the limits for replacing depends on the operating conditions and the existing operating parameters.

With torsional backlash $\geq \Delta s_{max}$. [mm] the elastomer rings/DZ individual elements must be replaced. With wear ≥ 25 % of the original thickness of the elastomer teeth it is necessary to replace the elastomer rings/DZ individual elements.

In order to ensure a long service life of the coupling and avoid dangers with the use in potentially explosive atmospheres, the shaft ends must be accurately aligned. Please absolutely observe the displacement figures specified (see table 17). If the figures are exceeded, the coupling will be damaged.

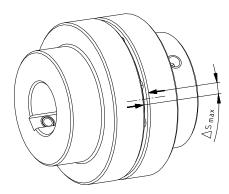


Illustration 38: Inspection of the limit of wear

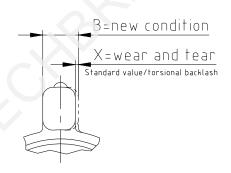


Illustration 39: Wear of elastomer ring

Table 18:

		Limits of wea	r			Limits of wear	•
Size	Size Thickness of elastomer tooth [mm] Friction X _m	Friction X _{max.} [mm]	Torsional backlash ΔS _{max.} [mm]	Size	Thickness of elastomer tooth [mm]	Friction X _{max.} [mm]	Torsional backlash ∆S _{max.} [mm]
28	7.2	1.80	3.0	100	23.0	5.75	9.1
32	8.8	2.20	3.6	110	22.5	5.5	8.0
38	9.0	2.20	3.6	125	24.5	6.0	9.0
42	9.6	2.40	4.0	140	23.8	6.0	9.0
48	10.3	2.55	4.2	160	25.4	6.4	9.6
55	11.9	2.95	4.7	180	26.2	6.6	9.9
60	12.6	3.15	5.1	200	28.0	7.0	13.0
65	13.4	3.35	5.4	220	29.5	7.4	13.4
75	15.6	3.90	6.1	240	32.5	8.1	14.1
85	19.1	4.75	7.4	260	38.0	9.5	15.5
90	20.0	5.00	7.0	280	40.0	10.0	16.0

10.4 Permissible coupling materials in potentially explosive atmospheres

In the explosion groups IIA, IIB and IIC the following materials may be combined:

EN-GJL-250 (GG 25) EN-GJS-400-15 (GGG 40)

Steel

Semifinished products made of aluminium with a magnesium share of up to 7.5°% and a yield point of $R_{p0.2} \ge 250 \text{ N/mm}^2$ are permitted for the use in hazardous locations.

Aluminium diecast is generally excluded for potentially explosive atmospheres.

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N Sheet: 49510 EN 30 of 31

Edition: 15

10 Enclosure A

Advice and instructions regarding the use in

hazardous locations

marking of couplings for potentially explosive atmospheres

Couplings for the use in potentially explosive atmospheres are marked on at least one component completely and on the remaining components by an (a) label on the outside diameter of the hub or on the front side each for the operating conditions permitted. The elastomer ring or DZ individual elastomer is excluded.

Short labelling: (standard)

CE

II 2GD c IIC T X/I M2 c X

Complete labelling:

CE (Ex

II 2G c IIC T6 resp. T5 - 30 °C \leq T_a \leq + 65 °C resp. + 80 °C II 2D c T 100 °C - 30 °C \leq T_a \leq + 80 °C / I M2 c - 30 °C \leq T_a \leq + 80 °C

The labelling with explosion group IIC includes the explosion groups IIA and IIB.

If the symbol a was stamped in addition to a, the coupling component was supplied unbored or pilot bored by KTR.

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	

KTR-N Sheet: 49510 EN 31 of 31

Edition: 15

10 Enclosure A

Advice and instructions regarding the use in

hazardous locations

10.6 EU Certificate of conformity

EU Certificate of conformity

corresponding to EU directive 2014/34/EU dated 26 February 2014 and to the legal regulations

The manufacturer - KTR Systems GmbH, D-48432 Rheine - states that the

POLY-NORM® couplings

in an explosion-proof design described in these operating/assembly instructions are devices corresponding to article 2, 1. of directive 2014/34/EU and comply with the general safety and health requirements according to enclosure II of directive 2014/34/EU.

The coupling described in here complies with the specifications of the following standards/guidelines:

DIN EN 1127-1 DIN EN 1127-2 DIN EN 13463-1 DIN EN 13463-5

The POLY-NORM® is in accordance with the specifications of the directive 2014/34/EU. One or several directives specified in the respective type examination certificate IBExU02ATEXB006_05 X were in part replaced by updated versions.

KTR Systems GmbH being the manufacturer confirms that the product mentioned above is in accordance with the specifications of the new directives, too.

According to article 13 (1) b) ii) of directive 2014/34/EU the technical documentation is deposited with the institution:

IBExU

Institut für Sicherheitstechnik GmbH

Fuchsmühlenweg 7

09599 Freiberg

Rheine, Place 2017-01-02

Date

Reinhard Wibbeling Engineering/R&D

Michael Brüning Product Manager

Please observe protection	Drawn:	2017-01-02 Pz	Replacing:	KTR-N dated 2016-05-13
note ISO 16016.	Verified:	2017-01-02 Pz	Replaced by:	